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Learning objective and outline
Objectives:
• To understand what fate modelling is
• To understand the role of fate modelling in USEtox
• To understand how fate modelling is applied in USEtox

Outline
1.What is chemical fate 
2.Chemical fate processes
3.What is chemical fate modelling
4.How is chemical fate modelling applied in USEtox
5.Exercise
6.Presentation of solution to exercise
7.Questions
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What is chemical fate
A matter of (important) details?
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What is chemical fate modelling
Do we need fate and exposure models in LCA?

Fate and exposure models serves 
one purpose only in impact 
assessment of chemical emissions:

Prediction of chemical behavior 
in the environment

The prediction power of the 
chemical fate and exposure models 
facilitates the quantification of the 
marginal toxicological impacts 
occurring in LCIA caused by 
chemical emissions.
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What is chemical fate
A matter of chance?

?
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What is chemical fate
A matter of chance?
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What is chemical fate
Severity of chemical emissions
a)What main fate properties determines the fate pattern of a 

chemical emission - i.e. which overall properties controls the fate 
of a chemical emission?

1. It’s mobility (transport potential)
2. Is ability to avoid degradation (persistence)

b)What factors determines the severity/impact potential of a 
chemical emission – i.e. which factors controls the impact 
potential of a chemical emission?

1. It’s toxicity (affinity for a specific receptor)
2. It’s exposure pattern (availability to interact with a receptor)
3. It’s fate pattern (ability to reach (i.e. mobility) and have time (i.e. 

persistence) to interact with a receptor)
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What is chemical fate
Adressing chemical behaviour in the environment 
in LCA
Assessment resolution:
”Single compound” assessment (CAS number resolution)

Impact potential

IP = Q × CF

Assessment of ecotoxicological impacts :

CF = EF × FF × XF 

Assessment of human toxicological
impacts:

CF = EF × FF × XF = EF × IF
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What is chemical fate
Role of fate models in LCA
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What is chemical fate
Role of fate and exposure in LCIA

Emissions into compartment m
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Chemical fate processes
Major grouping

Biological processes
•Biodegradation/bio-
transformation

•Biotransfer

Abiotical processes
•Degradation
•Sorption
•Advection
•Convection
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Chemical fate processes
Multimedia partioning of chemicals
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Chemical fate modelling
Nested models

Huijbregts et al. 2010
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Chemical fate modelling
Modelling principles – model approaches
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Chemical fate modelling
Modelling principles – model approaches

[A]i

time

Steady state 0
dt

d[A]i
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Chemical fate modelling
Modelling principles – model approaches

Mackay (2001)
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Chemical fate modelling
Mass balance model
Lavoisier principle of mass conservation: 

« In all operations of nature, matter cannot be created/destroyed, 
although it may be rearranged. This implies that for any chemical process 
in a closed system, the mass of the reactants must equal the mass of the 
products »

AirIN OUT

dM/dt = In - Out
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Chemical fate modelling 
Basic processes for environmental mass balance 
modeling
INPUTS

– Emission or Source, Sm [kg/hour]
– Intermedia transfer rate coefficient ki,m [hour-1]

• From other compartments
• From outside the system

OUTPUTS
– Intermedia transfer rate coefficient km,i [hour-1]

• To other compartments
• Burial processes into deep sediments
• Advection out of the system

TRANSFORMATION
– Degradation processes km,deg [hour-1] 

• biodegr., hydrolysis, photolyis, etc.
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Air

S k·M

IN OUT

dM/dt = 0

Emission rate:  S [kg/day]

Mass in compartment: M [kg]

Removal rate coefficient: k [per day]

(fraction of mass eliminated per day)

S =

Chemical fate modelling 
Equilibrium and/or Steady state:  IN = OUT
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Air

k∙M

OUT

Removal rate coefficient: k [day‐1]

(fraction of mass eliminated per day)

Half‐life: ½ [day]

(days to eliminate half of mass)

½ = ln(2)/k

Chemical fate modelling 
Rate Constant - Half-life Relationship

dM/dt = ‐k ∙M

Per definition:  M(½ )/M(0)=0.5

dM/dt = In ‐ Out
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Chemical fate modelling 
Removal rate coefficients k
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How is chemical fate modelling applied in 
USEtox
Matrix Algebra Solution Dynamic and steady 
state solution
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How is chemical fate modelling applied in 
USEtox
Exercise: Fate of TCE in a two-compart. Syst.

23

Trichloroethylene (TCE) is a colourless, somewhat toxic, volatile liquid belonging to the 
family of organic halogen compounds. It is a chemical widely used in industry as a solvent in 
dry cleaning, in degreasing of metal objects, and in extraction processes, such as removal of 
caffeine from coffee or of fats and waxes from cotton and wool

water

air

Water outflow = 
2 · 107 m3/d 

Water volume = 3 · 109 m3 

TCE emissions to 
water = 590 kg/d 

Air outflow =
1.45 · 1012 m3/d 

Atmospheric degradation half‐life =   15 days
Aquatic degradation half life = 150 days 

Air volume = 2.5 · 1011 m3

kadv,a =

kadv,w =

kdeg,w =

kdeg,a =

Air‐to‐water transfer factor, kaw = 5.57 · 10‐3 days‐1

Water‐to‐air transfer factor, kwa = 1.91 · 10‐1 days‐1
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How is chemical fate modelling applied in 
USEtox 
Fate of TCE in a two-compart. syst.

Q1) Determine the total rate coefficients in air and water?

Q2) Which is the dominant removal pathway in air and in water 
respectively?
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How is chemical fate modelling applied in 
USEtox 
Fate of TCE in a two-compart. syst.

25

Q3: Determine the Mass (or Concentration in air and water 
respectively)?
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Solutions

26
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How is chemical fate modelling applied in 
USEtox 
Fate of TCE in a two-compartment system - Q1

Conversions of half‐lives to rate coefficients

Atmospheric degradation half‐l ife  τ½ (degA)= 15 days kdegA=ln(2)/τ½ (degA)= 0,0462 days
‐1

Aquatic degradation half‐l ife τ½ (degW)= 150 days kdegw=ln(2)/τ½ (degW)= 0,00462 days
‐1

Half‐lives Rate constants for degradation

Calculation of rate costants for advective loss

Air

Vair= 2,50E+11 m
3

Fair= 1,45E+12 m
3
/d Fair/Vair= 5,80 days

‐1

Water

Vwater= 3,00E+09 m
3

Fwater= 2,00E+07 m
3
/d Fwater/Vwater= 0,0067 days

‐1

Volume Advective flow Rate constant for advective loss
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How is chemical fate modelling applied in 
USEtox 
Fate of TCE in a two-compartment system - Q1

Loss process Rate constant Loss process Rate constant

Advection 5,8000 days
‐1

Advection 0,0067 days
‐1

Degradation 0,0462 days
‐1

Degradation 0,0046 days
‐1

Inter‐media exchange (air→water) 0,0056 days
‐1

Inter‐media exchange (water→air) 0,1910 days
‐1

Total 5,85 days
‐1

Total 0,20 days
‐1

Compartment

Air Water
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How is chemical fate modelling applied in 
USEtox 
Fate of TCE in a two-compartment system – Q2

Loss process Rate constant Loss process Rate constant

Advection 5,8000 days
‐1

Advection 0,0067 days
‐1

Degradation 0,0462 days
‐1

Degradation 0,0046 days
‐1

Inter‐media exchange (air→water) 0,0056 days
‐1

Inter‐media exchange (water→air) 0,1910 days
‐1

Total 5,85 days
‐1

Total 0,20 days
‐1

Compartment

Air Water

Dominant removal process 
for air

Dominant removal process 
for water
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How is chemical fate modelling applied in 
USEtox 
Fate of TCE in a two-compartment system – Q3

SkM ‐1 

Steady state mass

Step 1:

Calculate fate matrix )k( ‐1

Step 2:

Calculate product of and source vectors )Sk( ‐1 
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How is chemical fate modelling applied in 
USEtox 
Fate of TCE in a two-compartment system –
Q3 step 1

Loss process Rate constant Loss process Rate constant

Advection 5,8000 days
‐1

Advection 0,0067 days
‐1

Degradation 0,0462 days
‐1

Degradation 0,0046 days
‐1

Inter‐media exchange (air→water) 0,0056 days
‐1

Inter‐media exchange (water→air) 0,1910 days
‐1

Total 5,85 days
‐1

Total 0,20 days
‐1

Compartment

Air Water
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How is chemical fate modelling applied in 
USEtox 
Fate of TCE in a two-compartment system –
Q3 step 1

Inversion of matrix

Source: mathworld.wolfram.com
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How is chemical fate modelling applied in 
USEtox 
Fate of TCE in a two-compartment system –
Q3 step 1

Fate factor matrix
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How is chemical fate modelling applied in 
USEtox 
Fate of TCE in a two-compartment system – Q3

SkM ‐1 

Steady state mass

Step 1:

Calculate fate matrix )k( ‐1

Step 2:

Calculate product of and source vectors )Sk( ‐1 
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How is chemical fate modelling applied in 
USEtox 
Fate of TCE in a two-compartment system –
Q3 step

Source matrix [kg/day]

SkM ‐1  
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Original scenario

Comparative scenario

Additive scenario

Air Water Air Water Air Water

Air 0.171 0.163 0 0 0 96.0

Water 0.009 5.008 0 590 0 2954.8

Air Water Air Water Air Water

Air 0.171 0.163 590 0 101.0 96.0

Water 0.009 5.008 0 590 5.1 2954.8

Air Water Air Water Air Water

Air 0.171 0.163 0 590 0.0 197.0

Water 0.009 5.008 0 590 0.0 2959.8

x =

x =

x =

Fate matrix
[days]

Source matrix 
[kg/day]

Mass matrix 
[kg]


